

CryElso™ 7

CryElso™ 7: 7% nickel steel for equipment designed for cryogenic temperature service

CryElso™ 7 is an alloyed steel grade containing 7% nickel intended for the fabrication of storage tanks for Liquefied Natural Gas, Liquefied Ethylene Gas, Liquefied Ethane and other extra low temperature service equipment.

CryElso™ 7 is a quenched and tempered grade providing adequate tensile and toughness properties equivalent to those of classical 9% nickel steel.

CryElso™ 7 is manufactured via the electric arc furnace basic process, with deep dephosphorisation, followed by ladle refining processing including deep desulfurisation and vacuum degassing in order to provide a reproducible chemistry and a clean and homogeneous steel.

The use of special steelmaking practice provides high cleanliness combined with optimised chemical composition. CryElsoTM 7 produces excellent toughness at low temperature and good crack arrest properties. CryElsoTM 7 is currently being developed for LNG, ethylene and ethane storage tanks projects worldwide.

It can also find applications in cryogenic piping and ship board storage systems.

PROPERTIES

STANDARDS

> ASTM A 553 Type III (UNS K61365)

> ASME Code Case 2842 of BPVC for use in ASME VIII Div.1 and Div.2

> API 620 inclusion in Annex Q approved and sent to publication

CHEMICAL ANALYSIS - WEIGHT %

Chemical analysis is guaranteed as per Table I hereunder.

Table I (%)	С	Mn	Si	Р	S	Ni	Cu	Cr	Мо	Al	Nb	V
Heat analysis	<0.06	0.30/0.80	<0.30	<0.005	<0.001	6.50/7.50	<0.10	<0.30	<0.30	>0.020	<0.030	<0.010

TENSILE PROPERTIES

One transverse tensile test specimen is sampled at both ends from each Quenched and Tempered plate. Guaranteed tensile properties are given in Table II

Table II	R _{p0.2} (MPa)	R _m (MPa)	A ₅₀ (%)
5 ≤ t ≤ 40 mm	585 mini	690 / 825	20 mini

IMPACT PROPERTIES

One set of three transverse Charpy V-Notch impact test specimens is sampled at one end from each Quenched and Tempered plate. More specimens can be extracted according to requirements. Guaranteed impact properties are given in Table III. As far as possible in relation with plate thickness, the largest sample size is being used.

Table III	Test	Energy	y absorption	Lateral expansion	Shear fracture
Table III	temperature	Average for a set	One specimen for a set	Each specimen	
10x10 mm specimen for plate thickness 10 mm and above			75 J mini		
10x7.5 mm specimen for plate thickness 7.5 mm to 9.99 mm	-196°C	75 J mini	56 J mini	0.38 mm mini	75% mini
10x5 mm specimen for plate thickness 5 mm to 7.49 mm		50 J mini	38 J mini		

HEAT TREATMENT

Water Quenching and Tempering treatment, with possible intermediate treatment. Heating at 820°C minimum before quenching and tempering at 540°C minimum. Intermediate quenching can be processed at 650°C minimum.

RESIDUAL MAGNETISM

CryElso™ 7 is quaranteed to be free of residual magnetism exceeding 50 Gauss.

INTERNAL SOUNDNESS

CryElso™ 7 is guaranteed to be free of lamination, porosity and inclusions exceeding the acceptance criteria of A578 Level C.

Upon special request ultrasonic examination can be carried out and more severe criteria can be quaranteed.

SURFACE CONDITION

CryElso™ 7 is supplied in the shot blasted condition. A protective paint coating can be applied, please enquire. CryElso™ 7 is guaranteed to be free of any injurious surface defects. Upper and lower surfaces are visually checked before shipment. Inherent surface imperfections are being checked according to the acceptance criteria of EN 10163, class B, sub class 2.

STAMPING

CryElso™ 7 is stamped in accordance with the relevant ASTM standard. All plates are low stress die-stamped for traceability directly after rolling and before any heat treatment .This procedure contributes to removing eventual crack-starting risks. No under thickness is produced by this procedure.

DELIVERY CONDITIONS

PREFABRICATED PIECES

By special agreement, e.g. for storage tanks projects, prefabricated pieces can be delivered according to drawings. The following operations can be done: bevelling, bending, rolling of shell to radius, cutting to shape, fabrication of stiffeners and annular plates, pre-welding and temporary warehousing.

AVAILABLE SIZES

CryElso[™] 7 is available in thicknesses from 5 mm up to 40 mm (3/16" up to 1 $\frac{1}{2}$ "). Industeel can supply plates up to 12.5 tonnes unit weight at widths between 1500 and 3680 mm as a standard, the maximum width depending on thickness. Please enquire for other sizes as the product capability range is under constant development.

COLD FORMING

CryElso™ 7 is suitable for cold forming operation.

- > If cold deformation does not exceed 5%, no further heat treatment is needed.
- > If cold deformation exceeds 5%, but is less than 10%, a Stress Relief heat treatment can be applied according to the following recommendation.
- > If cold deformation exceeds 10%, the mechanical properties are to be regenerated by Quenching and Tempering. Soaking time and temperature are mentioned on the Mill test certificate.

Recommended Stress Relief Treatment						
Heating rate	according to furnace capability					
Soaking temperature	550°C ± 10°C					
Soaking time	2 min/mm of thickness with a minimum of 20 minutes					
Cooling rate	in still air					

HOT FORMING

CryElso™ 7 is suitable for hot forming operation. A temperature not exceeding 1150°C is recommended. After hot forming, the mechanical properties must be regenerated by Quenching and Tempering and eventual intermediate quenching. Soaking times and temperatures are mentioned on the Mill test certificate.

Shear cutting or sawing may be applied. Also, gas cutting or plasma cutting can be used. After a light grinding in order to obtain a bright metal finish, the Heat Affected Zone hardness is guaranteed below 360 HV10. Less than 0.2 mm metal removal is needed to achieve this. The low carbon martensite which is produced in the Heat Affected Zone remains very tough with limited hardness increase, even in the non-tempered condition.

WELDING CONDITIONS

CryElso™ 7 can be welded using all usual welding processes such as GMAW, GTAW, SMAW and SAW. Usual Heat Input, typically in the range from 1.0 kJ/mm to 2.5 kJ/mm, can be used. Unless the construction is heavily restrained, preheating is not necessary. Interpass temperature shall be limited to 150°C maximum. Unless the construction is heavily restrained or unless mandated by some rule, Post Weld Heat Treatment is not necessary. If for any reason Post Weld Heat Treatment has to be carried out, the following parameters apply.

Recommended Post Weld Heat Treatment							
Heating rate	according to furnace capability						
Soaking temperature	550°C ± 10°C						
Soaking time	2 min/mm of thickness with a minimum of 20 minutes						
Cooling rate	in still air						

Please enquire for further recommendations on PWHT.

HAZ PROPERTIES

Thanks to a very low carbon content, the structure in the Heat Affected Zone is a very tough martensite; even in the As-Welded condition. Hardness is limited to below 360 HV10, and good crack arrest properties give a full confidence in $CryElso^{TM}$ 7 when properly welded with a Heat Input up to 2.5 kJ/mm. Table IV gives typical welding tests results. Other data is available upon request .

Table IV

- > 7% Ni welded joint FCAW 3G (25 mm thick.)
- > ENiCrMo-3 filler metal
- > Tensile Test at Room Temperature

Plate thickness (mm)	Process / Position	Testing Temperature (°C)	TS (MPa)	Fracture location	
25	FCAW 3G	DT	698	DAA	
25	FCAW 3G	KI	701	BM	

Charpy V-Notch impact test (transverse direction)

SS	_ ر	all	- E	ر	Ε ((J)	LE (ı	mm)	a.	E (ft	.lbf)	LE ((in.)														
Plate thickness (mm)	Process/ Position	Testing Temperature (°C)	Location of specimen	Notch position	ind.	av.	ind.	av.	Testing Temperature (°F)	ind.	av.	ind.	av.														
					81		1.45			60		0.057															
				WM	89	84	1.55	1.453		66	62	0.061	0.057														
					83		1.36			61		0.054															
					61		0.76			45		0.030															
				FL	110	91	1.03	0.993		81	67	0.041	0 0.039 7 0.041														
					103		1.19 76		0.047																		
			1/16"	E1 4	86		0.97			63		0.038															
25	FCAW	- 196	under top	FL + 1 mm	75	90	0.94	1.050	-321	55	67	0.037	0.041														
			surface																110		1.24			81		0.049	
					222		1.75		16	164		0.054 0.030 0.041 0.047 0.038 0.037 0.049 0.069 0.069 0.066 0.080 0.077	0.069														
				FL + 3 mm	210	220	1.76	1.730		155	162		0.068														
					227		1.68			167		0.066															
					261		2.04			193		0.080															
				FL + 5 mm	253	254	1.95	1.940		187	188	0.077	0.076														
					249		1.83			184		0.072)72														
	API 620 Q				22	27	0.381			16	20	0.0150															

FILLER MATERIALS

CryElso™ 7 can be welded with metals of types 625, C276 or other high-strength nickel base alloys. Table V overviews some of the consumables classification.

Table V	SMAW	GMAW	FCAW	SAW Wire + Flux
AWS	SFA 5.11 ENiCrMo-3 (625) ENiCrMo-4 (276) ENiCrMo-6 (620)	SFA 5.14 ERNiCrMo-3 (625) ERNiCrMo-4 (276)	A5.34 ENiCrMo-3 T1-4 (625)	SFA 5.14 ERNiCrMo-3 (625) ERNiCrMo-4 (276)
EN	ISO 14172 E Ni 6625 (625) E Ni 6276 (276) E Ni 6620	ISO 18274 S Ni 6625 (625) S Ni 6276 (276) S Ni 6620	ISO 14172 E Ni 6625 (625) E Ni 6276 (276) E Ni 6620	ISO 18274 S Ni 6625 (625) S Ni 6276 (276) S Ni 6620
JIS	Z3224 DNiCrMo-3 (625) Z3225 D9Ni-2	Z3332 YGT9Ni-2		Z3333 YS9Ni + FS9Ni-F YS9Ni + FS9Ni-H

Table VI lists a non-exhaustive list of suitable filler materials in alloy type 625:

Table VI	ole VI SMAW GMAW		FCAM	SAW		
Table VI	SIVIAVV	GIVIAVV	FCAW	Wire	Flux	
ESAB	OK 92.45	OK Autrod 19.82		OK Autrod 19.82 SAW	OK 10.16	
LINCOLN	Blue max NiCro 60/20	Blue max LNM NiCro 60/20		Blue max LNS NiCro 60/20	Blue max 2000	
OERLIKON	Freezal 625					
T-PUT	Thermanit 625	Thermanit 625		Thermanit 625	Marathon 104	
UTP	6222Mo	A6222Mo	AF6222Mo	UP6222Mo	FX UP6222Mo	

Table VII lists a non-exhaustive list of suitable filler materials in alloy type C276:

Table VII	Table VII SMAW GMAW		SAW			
lable vii	SINIAW	GIVIAVV	Wire	Flux		
OERLIKON			Freezal S276	OP77		
UTP	776Kb	A776	UP776	FX UP776		

Table VIII lists some other types of available nickel-based filler materials (ENiCrMo-6):

Table VIII	SMAW	CAAAW	GMAW FCAW SAW		W
lable VIII	SIMAW	GIVIAW	FCAW	Wire	Flux
ESAB	OK 92.55				
LINCOLN	Blue max Nyloid 2				
OERLIKON	Freezal ENi9				
UTP	Soudonel D				
KOBELCO (other Hastelloy type)	NIC-1S	TGS-709S	DWN-70S	US-709S	PFN-3 or PFN-4

APPLICATIONS

The present trend is to increase cryogenic storage and transportation of LNG, ethylene and ethane for which CryElso™ 7 is an interesting alternate or complementary solution to CryElso™ 9Q traditional 9%Ni steel. CryElso™ 7 can also find further applications where cryogenic properties and limitation of weight are of importance, like piping, pressure vessels and storage spheres, floating storage tanks, etc.

YOUR CONTACTS

Patrick Toussaint

Tel. +32 71 44 16 27

patrick.toussaint@arcelormittal.com

http://industeel.arcelormittal.com

Industeel Belgium 266, rue de Châtelet B-6030 Marchienne-au-Pont

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.